Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes.
نویسندگان
چکیده
The contractile tissue of the heart is composed of individual cardiomyocytes. During mammalian embryonic development, heart growth is achieved by cell division while at the same time the heart is already exerting its essential pumping activity. There is still some debate whether the proliferative activity is carried out by a less differentiated, stem cell-like type of cardiomyocytes or whether embryonic cardiomyocytes are able to perform both of these completely different dynamic tasks, contraction and cell division. Our analysis of triple-stained specimen of cultured embryonic cardiomyocytes and of whole mount preparations of embryonic mouse hearts by confocal microscopy revealed that differentiated cardiomyocytes are indeed able to proliferate. However, to go through cell division, a disassembly of the contractile elements, the myofibrils, has to take place. This disassembly occurs in two steps with Z-disk and thin (actin)-filament-associated proteins getting disassembled before disassembly of the M-bands and the thick (myosin) filaments happens. After cytokinesis reassembly of the myofibrillar proteins to their mature cross-striated pattern can be seen. Another interesting observation was that the cell-cell contacts remain seemingly intact during division, probably reflecting the requirement of intact integration sites of the individual cells in the contractile tissue. Our results suggest that embryonic cardiomyocytes have developed an interesting strategy to deal with their major cytoskeletal elements, the myofibrils, during mitosis. The complex disassembly-reassembly process might also provide a mechanistic explanation, why cardiomyocytes cede to divide postnatally.
منابع مشابه
Golgi inheritance in mammalian cells is mediated through endoplasmic reticulum export activities.
Golgi inheritance during mammalian cell division occurs through the disassembly, partitioning, and reassembly of Golgi membranes. The mechanisms responsible for these processes are poorly understood. To address these mechanisms, we have examined the identity and dynamics of Golgi proteins within mitotic membranes using live cell imaging and electron microscopy techniques. Mitotic Golgi fragment...
متن کاملمقایسه فراساختار تکوین کاردیومیوسیتهای مشتق از بنیاختههای جنینی موش با کاردیومیوسیتهای طبیعی
Introduction: Stem cell biology has been the subject of much recent discussion. Embryonic stem (ES) cells, derived from the inner cell mass of the blastocyst stage of early mammalian embryos are expected to become a powerful tool in future regenerative medicine and developmental biology due to their capacity of self-renewal and pluripotency. In the present study, the ultrastructural development...
متن کاملDevelopmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes
Mammalian cardiomyocytes become post-mitotic shortly after birth. Understanding how this occurs is highly relevant to cardiac regenerative therapy. Yet, how cardiomyocytes achieve and maintain a post-mitotic state is unknown. Here, we show that cardiomyocyte centrosome integrity is lost shortly after birth. This is coupled with relocalization of various centrosome proteins to the nuclear envelo...
متن کاملFeatures of Cardiomyocyte Division During Rat Heart Development
In the present study, the division modalities and regularity of rat cardiomyocytes from different developing stages were investigated with immunohistochemistry, transmission electron microscopy and cell culture in vitro. The results showed that the cells with mitotic figure and binuclear cells exist in the normal cardiomyocytes in prenatal and postnatal life. There are two types of binuclear ca...
متن کاملHeterogeneous proliferative potential in regenerative adult newt cardiomyocytes.
Adult newt cardiomyocytes, in contrast to their mammalian counterparts, can proliferate after injury and contribute to the functional regeneration of the heart. In order to understand the mechanisms underlying this plasticity we performed longitudinal studies on single cardiomyocytes in culture. We find that the majority of cardiomyocytes can enter S phase, a process that occurs in response to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 117 Pt 15 شماره
صفحات -
تاریخ انتشار 2004